#### SIDDARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR



### (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road -517583

## **QUESTION BANK (DESCRIPTIVE)**

Subject with Code: ICS(20EC0451) Course & Branch: B.Tech & CSE, CSM, CIC

Year & Sem: III-B.Tech.& I-Sem. Regulation: R20

# UNIT –I INTRODUCTION TO COMMUNICATION SYSTEMS

| 1  | a) | Define Communication and draw the basic block diagram of                        | [L1][CO1] | [4M]          |
|----|----|---------------------------------------------------------------------------------|-----------|---------------|
|    |    | communication system.                                                           |           |               |
|    | b) | Explain the function of each block of communication system.                     | [L2][CO1] | [8M]          |
| 2  | a) | Define wired communication and wireless communication.                          | [L1][CO1] | [5M]          |
|    | b) | Compare Analog and Digital communication.                                       | [L4][CO1] | [7M]          |
| 3  | a) | Define modulation. Classify different types of modulation.                      | [L1][CO2] | [6M]          |
|    | b) | Explain the need for Modulation.                                                | [L2][CO2] | [6M]          |
| 4  | a) | Define Amplitude Modulation. Derive expression for AM wave.                     | [L1][CO3] | [7M]          |
|    | b) | Determine the modulation index of AM, Percentage Modulation and                 | [L3][CO3] | [5M]          |
|    |    | Bandwidth of AM.                                                                |           |               |
| 5  | a) | Explain shortly about i) Sidebands ii) Justify the reason for selecting         | [L3][CO3] | [4M]          |
|    |    | the DSB-SC over DSB FC.                                                         |           |               |
|    | b) | A modulating signal 10 cos $(2\pi \times 10^3 t)$ is used to modulate a carrier | [L3][CO3] | [8M]          |
|    |    | signal 20 cos $(2\pi \times 10^4 t)$ . Compute the modulation index, % of       |           |               |
|    |    | modulation index, frequency of sideband components and their                    |           |               |
|    |    | amplitudes. What will be the bandwidth of modulated signal?                     |           |               |
| 6  | a) | Illustrate the Amplitude modulation for single tone information.                | [L2][CO2] | [6M]          |
|    | b) | Discuss the advantages and disadvantages of DSB-SC.                             | [L1][CO2] | [6M]          |
| 7  | a) | What is DSB-SC Modulation? Explain the Time and Frequency                       | [L1][CO3] | [6M]          |
|    |    | domain expressions of DSB-SC wave.                                              |           |               |
|    | b) | Define demodulation. Explain any one amplitude demodulation                     | [L1][CO3] | [4M]          |
|    |    | technique                                                                       |           |               |
| 8  | a) | Explain single tone modulation for transmitting only upper side band            | [L2][CO3] | [6M]          |
|    |    | (USB) frequency of SSB modulation                                               |           |               |
|    | b) | Explain briefly about the various applications of SSB-SC.                       | [L2][CO3] | [6M]          |
| 9  | a) | Explain single tone modulation for transmitting only lower side band            | [L2][CO3] | [ <b>7M</b> ] |
|    |    | (LSB) frequency of SSB modulation.                                              |           |               |
|    | b) | What are the advantages and disadvantages of SSB-SC signal?                     | [L1][CO3] | [5M]          |
| 10 | a) | Comparison of Amplitude modulation techniques.                                  | [L4][CO3] | [6M]          |
|    | b) | List the advantages and disadvantages of Double side-band Full                  | [L1 [CO1] | [6M]          |
|    |    | carrier.                                                                        |           |               |

UNIT- II
Angle Modulation & Demodulation

| 1  | - \ | D.C                                                                     | II 11[CO11     | [ ( N / [ ] |
|----|-----|-------------------------------------------------------------------------|----------------|-------------|
| 1  | a)  | Define angle modulation. Classify different types of angle modulation   | [L1][CO1]      | [6M]        |
|    | • • | and advantages of Angle modulation.                                     | FT 435 G G G 3 | 5 (3 53     |
|    | b)  | Analyze the expression of single tone NBFM.                             | [L4][CO3]      | [6M]        |
| 2  | a)  | Define Frequency Modulation with necessary waveforms.                   | [L1][CO2]      | [6M]        |
|    | b)  | Derive the expression of Frequency modulation.                          | [L3][CO3]      | [6M]        |
| 3  | a)  | Explain the generation of NBFM and WBFM.                                | [L2][CO2]      | [6M]        |
|    | b)  | What are the advantages, disadvantages, and applications of FM.         | [L1][CO2]      | [6M]        |
| 4  | a)  | Explain the generation of FM using direct method.                       | [L2][CO2]      | [6M]        |
|    | b)  | What are the differences between NBFM and WBFM?                         | [L1][CO3]      | [6M]        |
| 5  | a)  | Classify Frequency modulation techniques.                               | [L4][CO2]      | [6M]        |
|    | b)  | Explain the generation of Narrowband FM wave.                           | [L2][CO3]      | [6M]        |
| 6  | a)  | Discuss about transmission bandwidth and Carson's rule of FM signal.    | [L2][CO2]      | [6M]        |
|    | b)  | A 20 MHz carrier is frequency modulated by a sinusoidal signal such     | [L3][CO3]      | [6M]        |
|    |     | that the peak frequency deviation is 100 kHz. Determine the             |                |             |
|    |     | modulation index and the approximate bandwidth of the FM signal if      |                |             |
|    |     | the frequency of the modulating signal is: (i) 1kHz (ii) 15 kHz         |                |             |
| 7  | a)  | Differentiate between the Amplitude Modulation and Frequency            | [L2][CO3]      | [6M]        |
|    |     | Modulation                                                              |                |             |
|    | b)  | Describe the construction and functionality of balanced slope detector. | [L1][CO2]      | [6M]        |
| 8  | a)  | Describe the functionality of each block of phase shift discriminator.  | [L2][CO2]      | [6M]        |
|    | b)  | Explain the block diagram of indirect method in FM generation.          | [L2][CO2]      | [6M]        |
| 9  | a)  | Explain briefly about Phase Modulation with necessary waveforms.        | [L2][CO2]      | [6M]        |
|    | b)  | Derive the expression of modulation index of Phase modulation           | [L3][CO2]      | [6M]        |
| 10 | a)  | Compare Phase Modulation and Frequency Modulation.                      | [L4][CO3]      | [6M]        |
|    |     |                                                                         |                |             |
|    | b)  | Differentiate between the Frequency Modulation and Phase                | [L2][CO2]      | [6M]        |
|    | -,  | Modulation with its modulated waveforms.                                | [ -][]         | [02.2]      |
|    |     |                                                                         |                |             |

**UNIT III Noise in Communication Systems** 

| 1  | 0) | Define Noise and list the different types of noises.              | [L2][CO1]    | [6M]      |
|----|----|-------------------------------------------------------------------|--------------|-----------|
| 1  | a) | **                                                                |              |           |
|    | b) | Explain briefly about Noise in communication system.              | [L1][CO1]    | [6M]      |
| 2  | a) | Explain noise figure and derive its expression.                   | [L2][CO1]    | [6M]      |
|    | b) | A mixer stage has a noise figure of 20 dB and it is preceded      | [L3][CO1]    | [6M]      |
|    |    | by another amplifier with a noise figure of 9 dB and an available |              |           |
|    |    | power gain of 15 dB. Calculate the overall noise figure referred  |              |           |
|    |    | to the input.                                                     | FT 011 CO 11 | F ( ) ( ) |
| 3  | a) | Explain briefly about Signal to Noise Ratio.                      | [L2][CO1]    | [6M]      |
|    | b) | Calculate the input signal to noise ratio for an amplifier with   | [L4][CO1]    | [6M]      |
|    |    | an output signal to noise ratio of 16 dB and a noise figure of    |              |           |
|    |    | 5.4 dB                                                            |              |           |
| 4  | a) | Explain Pulse Amplitude modulation with its waveforms.            | [L2][CO3]    | [6M]      |
|    | b) | Explain the process of demodulation of a PAM signals.             | [L2][CO1]    | [6M]      |
| 5  | a) | What are the advantages and disadvantages of PAM signal.          | [L1][CO3]    | [6M]      |
|    | b) | Define Pulse Width Modulation and classify it with proper         | [L1][CO3]    | [6M]      |
|    |    | diagram.                                                          |              |           |
| 6  | a) | Explain the process involved in generation of PWM wave.           | [L2][CO3]    | [6M]      |
|    |    |                                                                   |              |           |
|    | b) | Describe the demodulation technique of PWM signal.                | [L1][CO4]    | [6M]      |
| 7  | a) | What are the advantages and disadvantages of PWM signal?          | [L1][CO4]    | [6M]      |
|    |    |                                                                   |              |           |
|    | b) | Differentiate between the Pulse Amplitude Modulation and          | [L2][CO4]    | [6M]      |
|    |    | Pulse Width Modulation with its modulated waveforms.              |              |           |
| 8  | a) | Explain about the generation of PPM signal.                       | [L2][CO4]    | [6M]      |
|    | b) | Elaborate demodulation of PPM signal.                             | [L1][CO3]    | [6M]      |
| 9  | a) | What are the advantages and disadvantages of PPM signal           | [L1][CO4]    | [6M]      |
|    | b) | Differentiate between the Pulse Position Modulation and           | [L2][CO3]    | [6M]      |
|    |    | Pulse Width Modulation with its modulated waveforms.              |              | -         |
| 10 | a) | Define pulse modulation and different types of pulse              | [L4][CO4]    | [6M]      |
|    |    | modulation in analog and digital communication.                   |              | -         |
|    | b) | Compare PAM, PWM and PPM techniques.                              | [L4][CO4]    | [6M]      |
|    |    |                                                                   |              |           |

# UNIT-IV Digital Communication

| 1   | a)        | Define Digital Communication and draw the basic block diagram of    | [L1][CO4]  | [5M]   |
|-----|-----------|---------------------------------------------------------------------|------------|--------|
|     | /         | Digital communication system.                                       | [][]       | [01/2] |
|     | b)        | Explain the function of each block of Digital communication system. | [L2][CO1]  | [7M]   |
| 2   | a)        | Explain the Process of Quantization with suitable example.          | [L2][CO5]  | [6M]   |
|     | b)        | Discuss the different types of Quantization in detail.              | [L2][CO5]  | [6M]   |
| 3   | a)        | Illustrate the different types of Quantization noise.               | [L2][CO5]  | [6M]   |
|     | b)        | State sampling theorem.                                             | [L1][CO1]  | [6M]   |
|     |           | What is Nyquist rate and Nyquist interval?                          |            |        |
| 4   | a)        | Illustrate with a neat block diagram explain PCM transmitter and    | [L3][CO4]  | [6M]   |
|     |           | receiver.                                                           |            |        |
|     | b)        | What are the advantages & disadvantages of PCM?                     | [L1][CO4]  | [6M]   |
| 5   | a)        | Explain DPCM system with neat diagram.                              | [L2][CO4]  | [6M]   |
|     | b)        | What are the advantages & disadvantages of DPCM.                    | [L1][CO4]  | [6M]   |
| 6   | a)        | Explain DM (delta modulation system) with suitable diagrams.        | [L2][CO4]  | [6M]   |
|     | b)        | Compare PCM, DPCM, and DM.                                          | [L4][CO4]  | [6M]   |
| 7   | a)        | Draw the block diagram of ASK modulator and demodulator and         | [L1][CO6]  | [6M]   |
|     |           | explain the operation                                               |            |        |
|     | b)        | Explain with suitable waveforms Amplitude Shift Keying.             | [L2][CO6]  | [6M]   |
| 0   | - )       | English the Discourse Forest and Life Institute in Late 1           | H 311CO 61 | [CM]   |
| 8   | a)        | Explain the Binary Frequency shift keying in detail.                | [L2][CO6]  | [6M]   |
|     | b)        | Explain with suitable waveforms Binary Frequency Shift Keying.      | [L2][CO6]  | [6M]   |
| 9   | <u>a)</u> | Explain the Binary Phase Shift Keyingmodulator and demodulator      | [L2][CO6]  | [6M]   |
| 1.0 | b)        | Explain with suitable waveforms Binary Phase Shift Keying.          | [L2][CO6]  | [6M]   |
| 10  | a)        | Explain Slope overload distortion & Granular Noise.                 | [L2][CO5]  | [6M]   |
|     | b)        | Compare ASK, FSK, and PSK.                                          | [L4][CO6]  | [6M]   |

**UNIT-V Introduction to Wireless Communication Systems** 

| 1  | a)   | Discuss briefly about the evolution of Mobile radio communication.        | [L2][CO1]    | [6M]    |
|----|------|---------------------------------------------------------------------------|--------------|---------|
|    | b)   | Explain second generation (2G) cellular networks.                         | [L2][CO1]    | [6M]    |
| 2  | a)   | Explain cordless telephone systems.                                       | [L2][CO1]    | [6M]    |
|    | b)   | Explain paging systems.                                                   | [L2][CO1]    | [6M]    |
| 3  | a)   | Explain cellular telephone system.                                        | [L2][CO5]    | [6M]    |
|    | b)   | Discuss about frequency division duplexing in wireless                    | [L2][CO6]    | [6M]    |
|    |      | communication.                                                            |              |         |
| 4  | a)   | Explain third generation (3G) wireless networks.                          | [L2][CO1]    | [4M]    |
|    | b)   | A spectrum of 30 MHz of bandwidth is allocated to a particular FDD        | [L3][CO6]    | [8M]    |
|    |      | cellular telephone system which uses two 25 kHz simplex channels to       |              |         |
|    |      | provide full duplex voice and control channels, compute the number        |              |         |
|    |      | of channels available per cell if a system uses (i) four-cell reuse, (ii) |              |         |
|    |      | seven-cell reuse, and (iii) 12-cell reuse. If 1 MHz of the allocated      |              |         |
|    |      | spectrum is dedicated to control channels, determine an equitable         |              |         |
|    |      | distribution of control channels and voice channels in each cell for      |              |         |
|    |      | each of the three systems.                                                | FT 21FG041   | F 63 F3 |
| 5  | a)   | Explain the multiple access schemes for narrowband systems.               | [L2][CO1]    | [6M]    |
|    | b)   | Discuss about time division duplexing in wireless communication.          | [L2][CO6]    | [6M]    |
| 6  | a)   | Explain the multiple access schemes for wideband systems.                 | [L2][CO6]    | [6M]    |
|    | b)   | Draw the TDMA frame structure and briefly explain the fields.             | [L1][CO6]    | [6M]    |
| 7  | a)   | Describe the features of the frequency division multiple access           | [L1][CO6]    | [6M]    |
|    | 1- \ | (FDMA) scheme.                                                            | [] 1][CO(]   | [CM]    |
|    | b)   | Describe the features of code division multiple access (CDMA) scheme.     | [L1][CO6]    | [6M]    |
| 8  | 0)   | Describe the features of time division multiple access (TDMA)             | [] 1][[](06] | [6M]    |
| 0  | a)   | scheme.                                                                   | [L1][CO6]    | [ONI]   |
|    | b)   | Evaluate the efficiency of time division multiple access (TDMA)           | [L4][CO6]    | [6M]    |
|    | U)   | scheme.                                                                   | [L4][CO0]    | [UIVI]  |
| 9  | a)   | Differentiate FDMA,TDMA and CDMA.                                         | [L2][CO6]    | [6M]    |
|    | b)   | Illustrate with a timing diagram how call initiated by a mobile user is   | [L3][CO6]    | [6M]    |
|    |      | established.                                                              |              | [0141]  |
| 10 | a)   | Explain various hybrid spread spectrum techniques in CDMA.                | [L2][CO6]    | [6M]    |
| L  | b)   | Describe space division multiple access (SDMA) scheme.                    | [L1][CO6]    | [6M]    |
|    | •    | <u> </u>                                                                  |              |         |

Prepared by: Mr.K.SravanKumar,Ms.D.R.Lakshmi